Abstract

Optimal regulatory control of an autoinductive recombinant culture in a fed-batch reactor is considered. End point optimization results in a three-stage process: biomass growth, inducer synthesis and product synthesis. It is shown that in the last stage the substrate concentration should be maintained constant. This is achieved using an input—output linearizing controller accompanied by a novel non-linear state observer for the estimation of unmeasured state variables on the basis of on-line off-gas carbon dioxide concentration measurements. Experimental runs of luminous recombinant E. coli strain in a laboratory fermenter demonstrate the rapid convergence of the observer estimates as well as the effectiveness and robustness of the overall control system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.