Abstract

In this paper a systematic observer-based multiple-model adaptive controller design method is proposed for Lipschitz nonlinear systems. By introducing a compensator in the observer-based controller, the uncertainty due to the estimation error is decreased and the steady-state response is improved significantly. In order to deal with the uncertainty of system dynamics, a multiple-model switching scheme is introduced to improve the transient performance. A state-dependent dwell-time-based switching logic is used to ensure the asymptotic stability as it can cancel the possible increase of Lyapunov function in each switching. A simulation result is given to demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.