Abstract
This paper considers a design problem of dissipative and observer-based finite-time nonfragile control for a class of uncertain discrete-time system with time-varying delay, nonlinearities, external disturbances, and actuator saturation. In particular, in this work, it is assumed that the nonlinearities satisfy Lipschitz condition for obtaining the required results. By choosing a suitable Lyapunov–Krasovskii functional, a new set of sufficient conditions is obtained in terms of linear matrix inequalities, which ensures the finite-time boundedness and dissipativeness of the resulting closed-loop system. Meanwhile, the solvability condition for the observer-based finite-time nonfragile control is also established, in which the control gain can be computed by solving a set of matrix inequalities. Finally, a numerical example based on the electric-hydraulic system is provided to illustrate the applicability of the developed control design technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.