Abstract

This paper focuses on controller and observer design for the longitudinal model of an air-breathing hypersonic vehicle (AHV) subject to actuator faults and limited measurements of the states. The feedback linearization method is firstly employed for a modified AHV model with actuator faults, and dynamic effect caused by the actuator faults on the linearized model is analyzed. Based on full state information, an adaptive controller is designed using the Lyapunov method, which guarantees reference command tracking of the AHV under actuator faults. Next, to estimate the unmeasurable states used in the adaptive controller, a sliding observer is designed based on the sliding control method and the Filippov’s construction of the equivalent dynamics (FCED). Finally, the adaptive controller is combined with the sliding observer to generate the observer-based adaptive controller, which relies only on partial state information. Simulations demonstrate that the observer-based adaptive controller achieves desired tracking performance and good robustness in the presence of actuator faults.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.