Abstract

We aim to address the consensus tracking problem for multiple-input-multiple-output (MIMO) linear networked systems under directed switching topologies, where the leader is subject to some nonzero but norm bounded inputs. First, based on the relative outputs, a full-order unknown input observer (UIO) is designed for each agent to track the full states' error among neighboring agents. With the aid of such an observer, a discontinuous feedback protocol is subtly designed. And it is proven that consensus tracking can be achieved in the closed-loop networked system if the average dwell time (ADT) for switching among different interaction graph candidates is larger than a given positive threshold. By using the boundary layer technique, a continuous feedback protocol is skillfully designed and employed. It is shown that the consensus error converges into a bounded set under the designed continuous protocol. Second, as part of the full states' error can be constructed via the agents' outputs, a reduced-order UIO is thus designed based on which discontinuous and continuous feedback protocols are, respectively, proposed. By using the stability theory of the switched systems, it is proven that the consensus error converges asymptotically to 0 under the designed discontinuous protocol, and converges into a bounded set under the designed continuous protocol. Finally, the obtained theoretical results are validated through simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.