Abstract

Observer-based hovering control over a tumbling asteroid in the body-fixed frame is studied. An extended Kalman filter (EKF) is used to process range measurements from a small collection of ground stations, yielding estimates of the spacecraft state vector and the gravitational parameters of the asteroid assuming a second degree and order gravity field model. The estimated states are used in the optimal feedback control algorithm which consists of two alternatives: time-varying LQR or the Lyapunov–Floquet transformation (LFT) and time-invariant LQR. The closed-loop response of the system and the control effort required are investigated and compared for both control strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.