Abstract
The objective of this article is to present an adaptive neural inverse optimal consensus tracking control for nonlinear multi-agent systems (MASs) with unmeasurable states. In the control process, firstly, to approximate the unknown state, a new observer is created which includes the outputs of other agents and their estimated information. The neural network is used to reckon the uncertain nonlinear dynamic systems. Based on a new inverse optimal method and the construction of tuning functions, an adaptive neural inverse optimal consensus tracking controller is proposed, which does not depend on the auxiliary system, thus greatly reducing the computational load. The developed scheme not only insures that all signals of the system are cooperatively semiglobally uniformly ultimately bounded (CSUUB), but also realizes optimal control of all signals. Eventually, two simulations provide the effectiveness of the proposed scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.