Abstract

In this paper, the problem of adaptive fuzzy decentralized optimal control is investigated for a class of nonlinear large-scale systems in strict-feedback form. The considered nonlinear large-scale systems contain the unknown nonlinear functions and unmeasured states. By utilizing the fuzzy logic systems to approximate the unknown nonlinear functions and cost functions, a fuzzy state observer is established to estimate the unmeasured states. The control design is divided into two phases. First, by using the state observer and the backstepping design technique, a feedforward decentralized controller with parameters adaptive laws is designed, by which the original controlled strict-feedback nonlinear large-scale system is transformed into an equivalent affine nonlinear large-scale system. Second, by using adaptive dynamic programming theory, a feedback decentralized optimal controller is developed for the equivalent affine nonlinear system. The whole adaptive fuzzy decentralized optimal control scheme consists of a feedforward decentralized controller and a feedback decentralized optimal controller. It is shown that the proposed adaptive fuzzy decentralized optimal control approach can guarantee that all the signals in the closed-loop system are bounded, and the tracking errors converge to a small neighborhood of zero. In addition, the proposed control approach can guarantee that the cost functions are minimized. Simulation results are given to demonstrate the effectiveness of the proposed control approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call