Abstract

A set of linear conditions on item response functions is derived that guarantees identical observed-score distributions on two test forms. The conditions can be added as constraints to a linear programming model for test assembly that assembles a new test form to have an observed-score distribution optimally equated to the distribution on an old form. For a well-designed item pool and items fitting the IRT model, use of the model results into observed-score pre-equating and prevents the necessity ofpost hoc equating by a conventional observed-score equating method. An empirical example illustrates the use of the model for an item pool from the Law School Admission Test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.