Abstract

The purpose of this paper is to analyze the trends and variability in extreme temperature indices and its impact on rice–wheat productivity over two districts of Bihar, India, which is part of the middle Indo-Gangetic Basin. Mann–Kendall non-parametric test was employed for detection of trend and Sen slope was determined to quantify the magnitude of such trends. We have analyzed 10 extreme temperature indices for monthly and seasonally. The influence of extreme temperature indices on rice–wheat productivity was determined using correlation analysis. As far as Patna is concerned, if the number of cool days during September ≥10, the rice productivity will increase due to the availability of sufficient duration to fill up the grain. However, higher warm days during all the months except June will affect the productivity. A significant negative correlation was noticed between maximum value of minimum temperature during September and rice productivity. Highly significant positive correlation was noticed between number of cool days during September with rice productivity while it was highly significant negative correlation in the case of number of warm days during the same month. As far as Samastipur is concerned, a negative correlation was noticed between wheat productivity and maximum value of maximum temperature (TXx) during February, but not statistically significant. The higher temperature may affect the kernel weight and thereby yield. It is seen that a critical value of TXx ≥29.2 °C will be harmful to wheat crop during February. A significant positive correlation of number of cool nights with wheat productivity also supports the above relationship. The critical values of extreme temperature indices during rice and wheat growing months provide an indicator to assess the vulnerability of rice–wheat productivity to temperature for Patna and Samastipur districts and there is a need to prepare an adaptive strategy and also develop thermo-insensitive rice–wheat high yielding varieties suitable for this region to sustain rice–wheat productivity under projected climate change situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.