Abstract
Abstract Using 54 yr of NCEP reanalysis global data from 1000 to 10 hPa, this study establishes the existence and the statistical significance of the zonal-mean temperature response to the 11-yr solar cycle throughout the troposphere and parts of the lower stratosphere. Two types of statistical analysis are used: the composite-mean difference projection method, which tests the existence of the solar cycle signal level by level, and the adaptive AR(p)-t test, which tells if a particular local feature is statistically significant at the 95% confidence level. A larger area of statistical significance than that in previous published work is obtained, due to the longer record and a better trend removal process. It reveals a spatial pattern consistent with a “bottom up” mechanism, involving evaporative feedback near the tropical ocean surface and tropical vertical convection, latent heating of the tropical upper troposphere, and poleward large-scale heat transport to the polar regions. It provides an alternative to the currently favored “top down” mechanism involving stratospheric ozone heating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.