Abstract

The climate system is gaining heat owing to increasing concentration of greenhouse gases due to human activities. As the world’s oceans are the dominant reservoir of heat in the climate system, an accurate estimation of the ocean heat content change is essential to quantify the Earth’s energy budget and global mean sea level rise. Based on the mean estimate of the three Argo gridded products considered, we provide a decadal ocean heat content estimate (over 2005–2014), down to 2000 m, of 0.76 ± 0.14 W m−2 and its spatial pattern since 2005 with unprecedented data coverage. We find that the southern hemisphere explains 90% of the net ocean heat uptake located around 40°S mainly for the Indian and Pacific oceans that corresponds to the center of their subtropical gyres. We find that this rapid upper ocean warming is linked to a poleward shift of mean wind stress curl enhancing Ekman pumping for the 45°S–60°S band. Therefore, the increase of Ekman pumping steepens the isopycnal surface and can enhance heat penetration into the deeper layers of the ocean. We also highlight a relative consistency between the year-to-year net top-of-the-atmosphere flux inferred by satellite measurements and the ocean heating rates (correlation coefficient of 0.53). We conclude that there is no strong evidence of missing energy in the climate system because of remaining large uncertainties in the observing system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call