Abstract
Absorption of solar UV irradiance in the spectral interval 120-420 nm is chiefly responsible for radiative heating and photodissociation of important atmospheric constituents (e.g., O2, O3, H2O, NO2, etc.) in the stratosphere, mesosphere, and lower thermosphere. Thus, the absolute value and time perturbations of the UV irradiance could significantly affect the energetics, photochemistry, and subsequent dynamics of these regions. Analysis of preliminary data from the SOLSTICE (UARS) observations for a period of 244 days (3 Oct 1991-2 Jun 1992) is discussed in this paper. The data provide mean daily values of the spectral distribution of the observed irradiances at 1-nm resolution and their solar rotation and semirotation variations. The average amplitudes of the 27-day irradiance oscillations for the 244-day data period were 5.7% at Lyman-alpha (121 nm), 1% at 200 nm, 0.5% at 210 nm, and generally less than 0.2% at wavelengths longer than 280 nm. The average amplitudes of 13.5-day oscillations were, by and large, about half of these values. Solar irradiance variations at 10.7 cm are highly correlated with those at Ly-alpha and other chromospheric emission lines (r = 0.7 to 0.8) and only moderately correlated with irradiances at wavelengths of 180-208 nm (r = 0.5). The correlation decreases as the source region of the irradiance gets closer to the base of the photosphere. At the 2-nm interval 279-281 nm, however, which contains the cores of the Mg II h and k lines, the correlation is again approximately 0.8.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.