Abstract

Large scale wind turbines deployed in “behind the meter” applications at medium and large scale industrial consumer sites can offset the purchase of retail electricity from the utility. However, unlike traditional onshore wind farm sites in elevated rural areas, such industrial sites tend to be at lower elevations and located in more urbanised areas with a higher likelihood of being in vicinity of manmade obstacles such as buildings. This research case study presents observed impacts of various site obstacle features, from local buildings to regional topography on the energy performance of an 850kW rated wind turbine operating in a peri-urban area. The study is based on the analysis of 10-minute SCADA data measured over multiple years. The analysis includes a novel wind turbine electrical energy rose (EER) approach to determine the directional variation of the wind turbine electrical energy output in relation to site features around the turbine location. The paper concludes that low broad buildings with heights of only 20% of the turbine hub height can have a significant energy reducing impact compared to taller narrow buildings and that hills ~8km from the turbine site have an energy reducing impact. The outcomes of the study should be of benefit to those involved in the pre-feasibility stages of deploying single large scale wind turbines at industrial sites in peri-urban areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call