Abstract
AbstractThe access of heat to the Antarctic ice shelf cavities is regulated by the Antarctic Slope Front, separating relatively warm offshore water masses from cold water masses on the continental slope and inside the cavity. Previous observational studies along the East Antarctic continental slope have identified the drivers and variability of the front and the associated current, but a complete description of their seasonal cycle is currently lacking. In this study, we utilize two years (2019–2020) of observations from two oceanographic moorings east of the prime meridian to further detail the slope front and current seasonality. In combination with climatological hydrography and satellite‐derived surface velocity, we identify processes that explain the hydrographic variability observed at the moorings. These processes include (a) an offshore spreading of seasonally formed Antarctic Surface Water, resulting in a lag in salinity and thermocline depth seasonality toward deeper isobaths, and (b) the crucial role of buoyancy fluxes from sea ice melt and formation for the baroclinic seasonal cycle. Finally, data from two sub‐ice‐shelf moorings below Fimbulisen show that flow at the main sill into the cavity seasonally coincides with a weaker slope current in spring/summer. The flow is directed out of the cavity in autumn/winter when the slope current is strongest. The refined description of the variability of the slope current and front contributes to a more complete understanding of processes important for ice‐shelf‐ocean interactions in East Antarctica.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.