Abstract

The observed seasonal and interannual variability of near-surface thermal structure of the Arabian Sea Warm Pool (ASWP) is examined utilizing a reanalysis data set for the period 1990–2008. During a year, the ASWP progressively builds from February, reaches its peak by May only in the topmost 60m water column. The ASWP Index showed a strong seasonal cycle with distinct interannual signatures. The years with higher (lower) sea surface temperature (SST) and larger (smaller) spatial extent are termed as strong (weak) ASWP years. The differences in the magnitude and spatial extent of thermal structure between the strong and weak ASWP regimes are seen more prominently in the topmost 40m water column. The heat content values with respect to 28°C isotherm (HC28) are relatively higher (lower) during strong (weak) ASWP years. Even the secondary peak in HC28 seen during the preceding November–December showed higher (lower) magnitude during the strong ASWP (weak) years. The influence of the observed variability in the surface wind field, surface net air–sea heat flux, near-surface mixed layer thickness, sea surface height (SSH) anomaly, depth of 20°C isotherm and barrier layer thickness is examined to explain the observed differences in the near-surface thermal structure of the ASWP between strong and weak regimes. The surface wind speed is much weaker in particular during the preceding October and February–March corresponding to the strong ASWP years when compared to those of the weak ASWP years implying its important role. Both stronger winter cooling during weak ASWP years and stronger pre-monsoon heating during strong ASWP years through the surface air–sea heat fluxes contribute to the observed sharp contrast in the magnitudes of both the regimes of the ASWP. The upwelling Rossby wave during the preceding summer monsoon, post-monsoon and winter seasons is stronger corresponding to the weak ASWP regime when compared to the strong ASWP regime resulting in greater cooling of the near-surface layers during the summer monsoon season of the preceding year. On the other hand, the downwelling Rossby wave is stronger during pre-monsoon months during the strong ASWP regime when compared to weak ASWP regime leading to lesser cooling during strong ASWP regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call