Abstract

AbstractTropical cyclones (TC) transfer kinetic energy to the upper ocean and thus accelerate the ocean mixed layer (OML) currents. However, the quantitative link between near‐surface currents and high wind speeds, under extreme weather conditions, remains poorly understood. In this study, we use multi‐mission satellites and drifting‐buoy observations to investigate the connections between TC surface winds and currents, including their spatial distribution characteristics. Observed ageostrophic current speeds in the OML increase linearly with wind speeds (for the range 20–50 m/s). The ratios of the ageostrophic current speeds to the wind speeds are found to vary with TC quadrants. In particular, the mean ratio is around 2% in the left‐front and left‐rear quadrants with relatively small variability, compared to between 2% and 4% in the right‐front and right‐rear quadrants, with much higher variations. Surface winds and currents both exhibit strong asymmetric features, with the largest wind speeds and currents on the TC right side. In the eyewall region of Hurricane Igor, high winds (e.g., about 47 m/s) induce strong currents (about 2 m/s). The directional rotations of surface winds and currents are resonant and dependent on the location within the storm. Wind directions are approximately aligned with current directions in the right‐front quadrant; a difference of about 90° occurs in the left‐front and left‐rear quadrants. The directional discrepancy between winds and currents in the right‐rear quadrant is smaller. Reliable observations of the wind‐current relation, including asymmetric features, support published theories developed in idealized numerical experiments to explain the upper ocean response to TCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.