Abstract

AbstractSeveral features of Langmuir turbulence remain unquantified despite its potentially large impacts on ocean surface mixing. For example, its vertical velocity variance, expected to be proportional to based on numerical simulations, was proportional to in recent field observations, where is the friction velocity and is surface Stokes velocity. To investigate unquantified features of Langmuir turbulence, we conducted a field experiment around a marine observation tower in a shallow sea off the southern coast of Japan in early winter when winds and waves (often swells) were often misaligned. Coherent structures similar to Langmuir cells were successfully identified in the horizontal and vertical structures of turbulent flows measured with upward- and horizontally looking acoustic Doppler current profilers (ADCPs). ADCPs and several anemometers attached at the tower showed that turbulent vertical velocity variance was large when the Langmuir number and Hoenikker number (; where B is surface buoyancy flux and H is the water depth) were both small and that the orientation of the cells was generally aligned in the direction of Lagrangian current shear. These results agree well with the previous numerical results. As in the previous observations, however, the vertical velocity variance appeared to be proportional to . In our experiment, this curious feature was explained by compensatory effects between waves and convection. Misaligned wind with waves also seems to characterize the observed Langmuir turbulence, though further quantitative analysis is required to confirm this result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.