Abstract

Abstract This report describes the in situ observed evolution of the atmospheric profile during an event of the boreal summer intraseasonal variation (BSISV) in the tropical western Pacific Ocean. The convectively active region of the BSISV proceeded northward over the sounding and radar network. Over the array, the situation changed from a convectively inactive period to an active period. Inspection of the sounding data revealed the gradual moistening of the lower troposphere during the convectively inactive period. The sounding-derived heat and moisture budget analyses indicated that both the convective- and large-scale processes caused moistening of the lower and middle troposphere where the radar echo tops were observed most frequently. This study is the first to identify such a “preconditioning” process for the BSISV in the western Pacific using detailed in situ observational data. During the preconditioning, an increase in CAPE was observed, as in previous studies of the MJO. An increase of moisture in the boundary layer was responsible for the increase of CAPE. The large-scale horizontal convergence in the boundary layer may be a key factor to moisten the boundary layer through the convective-scale processes, as well as through the large-scale processes to moisten the lower and middle troposphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call