Abstract
In reality, failure data are often collected under diffract operational conditions (covariates), leading to heterogeneity among the data. Heterogeneity can be classified as observed and unobserved heterogeneity. Un-observed heterogeneity is the effect of unknown, unrecorded, or missing covariates. In most reliability studies, the effect of unobserved covariates is neglected. This may lead to inaccurate reliability modeling, and consequently, wrong operation and maintenance decisions. There is a lack of a systematic approach to model the unobserved covariate in reliability analysis. This paper aims to present a framework for reliability analysis in the presence of unobserved and observed covariates. Here, the unobserved covariates will be analyzed using frailty models. A case study will illustrate the application of the framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.