Abstract

Cs2HfCl6 (CHC) is a promising high density, high-Z, non-hygroscopic, and high energy resolution scintillator. In CHC, many crystals have CsCl inclusions that form during growth. In this paper, we investigate how material synthesis, growth rate, and thermal gradient affect the formation of CsCl inclusions and their effect on scintillation performance. First, precursor material was made through a methanol synthesis process both with and without hydrochlorination. Next, five crystals were grown using Bridgman method, at growth rates of 1 or 0.5 mm/h, and thermal gradients of 21 °C or 34 °C per millimeter. The best overall performance was observed in a 22 mm diameter crystal produced using hydrochlorination which was grown at 1 mm/h in a thermal gradient of 34 °C per millimeter. It had a light yield of 36,000 photons/MeV and an energy resolution of 4.0% at 662 keV. We have also shown that poorer scintillation performance in the lower quality crystals is most likely due to reduced light collection caused by a higher concentration of inclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.