Abstract

Void nucleation and growth was studied in three binary equiaxed α-β Ti-Mn alloys containing 1.8 wt pct Mn (alloy 2), 3.9 wt pct Mn (alloy 3), and 5.8 wt pct Mn (alloy 4) given heat treatments to vary the alpha size at constant volume fraction of alpha. Void nucleation rates expressed as number of voids per unit volume,Nv, increased exponentially with true strain, e. WhenNv was normalized with respect to the number of alpha particles or grains per unit volume, NαT,Nv/NαT was found to be largest for the largest alpha size in each alloy series. Void size distributions as a function of strain for one alloy containing 3.9 wt pct Mn (alloy 3 given heat treatment B,3B) were presented and, as expected, the largest number of voids occurred at the smallest void sizes. Void growth rates for alloys 3 and 4 were found to increase with increasing particle size and this was ascribed to decreasing constraints to slip with increasing particle size. For alloy 2C with the largestα grain size void growth rates were smallest and this behavior was attributed to the growth inhibiting effects of multiple twinning. Evidence was adduced to show that nucleating voids grow more rapidly than established voids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.