Abstract
Infection of the catheterized urinary tract with Proteus mirabilis causes blockage of the catheter by crystalline bacterial biofilms. The aim of this work is to identify a surface-coating for catheters that is not vulnerable to colonization by Pr. mirabilis. A parallel-plate flow-cell and phase contrast microscopy were used to follow bacterial adhesion onto polymer films. Experiments with a urease-negative mutant of Pr. mirabilis suspended in buffer or urine, identified agarose as a polymer on which biofilm did not form. In tests with wild-type urease-producing cells in urine, no adhesion of cells onto agarose was observed for 3 h but then as the pH rose above 8.2, the surface rapidly became colonized by crystalline biofilm. In urine at pH below 8.0, Pr. mirabilis does not adhere to agarose-coated surfaces. When the pH rises above 8.2, however, aggregates of crystals and bacteria form in the urine and are deposited on such surfaces. Strategies to prevent the formation of crystalline biofilms on urinary catheters will need to consider both the properties of the surface-coatings and the requirement to prevent the alkaline conditions that induce crystal formation in urine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.