Abstract
We show that the use of the fourth-root trick in lattice QCD with staggered fermions corresponds to a non-local theory at non-zero lattice spacing, but argue that the non-local behavior is likely to go away in the continuum limit. We give examples of this non-local behavior in the free theory, and for the case of a fixed topologically non-trivial background gauge field. In both special cases, the non-local behavior indeed disappears in the continuum limit. Our results invalidate a recent claim that at non-zero lattice spacing an additive mass renormalization is needed because of taste-symmetry breaking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.