Abstract

Using signal-averaging techniques, one can record small membrane currents which remain even after blockage of the ionic currents which accompany electrical excitation in muscle. These residual currents probably represent the reorientation of charged molecules inside the membrane in response to a change in membrane potential. Two operationally separable types of intramembrane charge movement in muscle are described, one of which may play a role in excitation-contraction coupling. Studies of tetrodotoxin binding to muscle indicate that "sodium gating current" is unlikely to contribute significantly to either type of charge movement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.