Abstract

In two laboratory-scale enclosures of water from the shallow, eutrophic Lake Loosdrecht (the Netherlands), the predominating filamentous cyanobacteria grew vigorously for 2 weeks, but then their populations simultaneously collapsed, whereas coccoid cyanobacteria and algae persisted. The collapse coincided with a short peak in the counts of virus-like particles. Transmission electron microscopy showed the morphotype Myoviridae phages, with isometric heads of about 90 nm outer diameter and > 100-nm long tails, that occurred free, attached to and emerging from cyanobacterial cells. Also observed were other virus-like particles of various morphology. Similar mass mortality of the filamentous cyanobacteria occurred in later experiments, but not in Lake Loosdrecht. As applies to lakes in general, this lake exhibits high abundance of virus-like particles. The share and dynamics of infectious cyanophages remain to be established, and it is as yet unknown which factors primarily stabilize the host-cyanophage relationship. Observations on shallow, eutrophic lakes elsewhere indicate that the cyanophage control may also fail in natural water bodies exhibiting predominance of filamentous cyanobacteria. Rapid supply of nutrients appeared to be a common history of mass mortality of cyanobacteria and algae in laboratory and outdoor enclosures as well as in highly eutrophic lakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.