Abstract
The specimen charging defects of non-conductive materials in scanning electron microscopy are discussed with reference to the surface electric field generated by the illuminating electron beam dose. If the charge density depends on the relaxation time constant as defined by a product of the permittivity and resistivity when known or available, the electric field can be evaluated by the incident dose stored when illuminated by an electron scanning beam. It was found by observation that uncoated or non-conductive materials pre-bombarded by a positive ion beam, which contributes to the generated negative field, together with the charging effects, could be eliminated at the optimum time of neutralization. In the normal process of double fixation and staining of biological specimens, the local electric field produces increased contrast due to polarization effects. The dark and bright images of secondary and backscattered electrons, respectively, can be analysed by taking into account local polarization, in addition to voltage contrast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.