Abstract

AbstractDetailed observations on a collapsing kame terrace indicate that the terrace is being reshaped by: slumping and sliding of debris into depressions, melt-water erosion on the side of the terrace, debris flows in the gullies, and stagnant-ice bursts, a phenomenon analogous to a glacier burst except in the mode of formation of the water. Temperatures in the gravel over the ice, where the gravel is about 4 m thick, indicate that the rate of melting of the upper surface of the ice due to conduction may be as high as 24 cm year−1. Highest temperatures in the gravel were recorded during periods of heavy rainfall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.