Abstract

We report observations from the DIII-D tokamak indicating that boron (B) powder injection in tokamak plasmas improves wall conditions similarly to glow discharge boronization (GDB). Isotopically enriched B powder (B11 > 95%) was introduced gravitationally in a sequence of H-mode plasma discharges at rates up to ∼160 mg s−1 for durations up to 3 s. Boron injection to cumulative amounts ≤0.1 g appeared to improve wall conditions similarly to boronization, with indications of reduced wall fueling, reduced recycling at the outer strike point and reduced impurity content at breakdown. Post-mortem analysis of graphite samples exposed to far scrape-off layer plasma fluxes during boron injection confirm the formation of a B-C layer, with average surface composition B:C ∼ 1. The results suggest that injecting boron-rich powders in tokamak plasmas can effectively replenish boron films on carbon plasma facing components to improve wall conditions and extend the duration of the beneficial effects of GDB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call