Abstract

The structure of the photospheric magnetic field during solar flares is examined using echelle spectropolarimetric observations. The study is based on several Fe I and Cr I lines observed at locations corresponding to brightest H$\alpha$ emission during thermal phase of flares. The analysis is performed by comparing magnetic field values deduced from lines with different magnetic sensitivities, as well as by examining the fine structure of $I\pm V$ Stokes profiles splitting. It is shown that the field has at least two components, with stronger unresolved flux tubes embedded in weaker ambient field. Based on a two-component magnetic field model, we compare observed and synthetic line profiles and show that the field strength in small-scale flux tubes is about $2-3$ kG. Furthermore, we find that the small-scale flux tubes are associated with flare emission, which may have implications for flare phenomenology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.