Abstract

Passive microwave (PMW) radiometric observations of clouds from multichannel imaging sensors onboard low Earth-orbiting environmental satellites are now a vital operational dataset. The first operational passive microwave sensor was the Special Sensor Microwave/Imager onboard the Defense Meteorological Satellite Program satellites, which has been gathering hydrological data records since 1987, and continued with the Tropical Rainfall Measuring Mission (TRMM) and the Advanced Microwave Scanning Radiometer onboard Aqua. These sensors view the underlying scene with an Earth incidence angle near 53/spl deg/ and with a variable azimuthal angle, depending upon the orbit direction and scan position. The WindSat sensor onboard the Coriolis satellite, launched in January 2003, is a five-channel polarimetric PMW radiometer designed to optimize ocean surface wind vector retrievals. While it does not have 85-GHz channels, an added feature is its unique fore-aft viewing capability across a portion of its fore scan swath. This provides a view of the underlying scene from two separate azimuthal directions, which provides added information on the three-dimensional (3-D) structure of clouds and their evolution. In this paper, we compare WindSat and TRMM Precipiation Radar observations of tropical cyclones (TCs) with Monte Carlo radiative transfer simulations performed on idealized 3-D convective cloud structures. The TC 3-D structure and possible tilt in the convective cloud structure are inferred from the difference between the 37-GHz equivalent blackbody brightness temperatures (T/sub B/) from the corresponding fore and aft view observations. The information gained from this analysis is important since asymmetries in the cloud vertical and horizontal structure may be an indication of upper level wind shear, which plays a major role in influencing changes of the TC intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.