Abstract
TeV J2032+4130 was the first unidentified source discovered at very high energies (VHE; E $>$ 100 GeV), with no obvious counterpart in any other wavelength. It is also the first extended source to be observed in VHE gamma rays. Following its discovery, intensive observational campaigns have been carried out in all wavelengths in order to understand the nature of the object, which have met with limited success. We report here on a deep observation of TeV J2032+4130, based on 48.2 hours of data taken from 2009 to 2012 by the VERITAS (Very Energetic Radiation Imaging Telescope Array System) experiment. The source is detected at 8.7 standard deviations ($\sigma$) and is found to be extended and asymmetric with a width of 9.5$^{\prime}$$\pm$1.2$^{\prime}$ along the major axis and 4.0$^{\prime}$$\pm$0.5$^{\prime}$ along the minor axis. The spectrum is well described by a differential power law with an index of 2.10 $\pm$ 0.14$_{stat}$ $\pm$ 0.21$_{sys}$ and a normalization of (9.5 $\pm$ 1.6$_{stat}$ $\pm$ 2.2$_{sys}$) $\times$ 10$^{-13}$TeV$^{-1}$ cm$^{-2}$ s$^{-1}$ at 1 TeV. We interpret these results in the context of multiwavelength scenarios which particularly favor the pulsar wind nebula (PWN) interpretation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.