Abstract

We searched for the near infrared extragalactic background light (IREBL) in data from the Near Infrared Spectrometer (NIRS) on the Infrared Telescope in Space (IRTS). After subtracting the contribution of faint stars and a modeled zodiacal component, a significant isotropic emission is detected whose in-band flux amounts to ~ 30 nWm−2sr−1. This brightness is consistent with upper limits of COBE/DIRBE, but is significantly brighter than the integrated light of faint galaxies. The star subtraction analyses from DIRBE data show essentially the same results apart from the uncertainty in the model of the zodiacal light. A significant fluctuation of the sky brightness was also detected. A 2-point correlation analysis indicates that the fluctuations have a characteristic spatial structure of 100 ~ 200 arcmin. This could be an indication of the large scale structure at high redshift. Combined with the far infrared and submillimeter EBL, the total energy flux amounts to 50 ~ 80 nWm−2sr−1 which is so bright that unknown energy sources at high redshifts are required.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call