Abstract

Apodemus peninsulae, a dominant rodent species in temperature forests of northeastern China, is a model animal to explore the ecological functions of reciprocal coevolution of animals and plants. From August to October 2016, 24 infra-red cameras were installed to study the feeding behavior and activity patterns of A. peninsulae in its natural environment. By analyzing 5618 video records, we found that feeding behavior, followed by motor and sentinel behaviors, was their main activity. In the behavior spectra, motor behavior (creep, walk, and skip), feeding behavior (forage, feeding, transport, hoarding, and clean), and sentinel behavior (alert, flee, banishment, and coexistence) accounted for 57.96%, 40.36%, and 1.68% of their behavior, respectively. The peak of feeding behavior occurred between 18:00 and 23:00, and feeding behavior frequency, duration, and activity rhythms differ among August to October. Furthermore, activity was the greatest after sunset and before sunrise, indicating a nocturnal lifestyle; however, from August to October, the start time of the activity was earlier, and the end time was later than usual. On average, mice spent 21.6 ± 11.6 times/night feeding, with a duration of 63.58 ± 98.36 s; while they spent less time in foraging, 39.05 ± 51.63 s. We found a significant difference in feeding and foraging frequency, with mice spending on average 10.84 ± 9.85 times/night and 9.23 ± 11.17 times/night, respectively. Our results show that feeding and foraging behavior is also influenced by light intensity, suggesting a preference for crepuscular periods of the day. Infra-red cameras are very useful in detecting activity patterns of animals that are not easily observable; these cameras are able to capture a large amount of valuable information for research into ecological functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.