Abstract

AbstractRecent instrumentation can distinguish various types of aerosol particles in the stratosphere and determine their relative abundance. In the background lower stratosphere between major volcanic eruptions, most particles are either relatively pure sulphuric acid, sulphuric acid with material from ablated meteoroids or mixed organic‐sulphate particles that originated in the troposphere. The meteoritic iron and magnesium appear to be dissolved whereas the aluminum and silicon appear to be inclusions. Most stratospheric aerosol mass is liquid sulphuric acid and associated water, but a large fraction of particles contain either inclusions of meteoritic elements such as silicon or organic material that is probably effloresced or glassy. These solid phases could have large but unknown implications for the ability of particles to act as freezing nuclei for polar stratospheric clouds. Internally mixed black carbon is a measurable but very small component of the stratospheric aerosol by mass. Despite their importance for heterogeneous chemistry, there are few quantitative measurements of halogens in stratospheric particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.