Abstract

Supra-arcade fans are bright, irregular regions of emission that develop during eruptive flares, above flare arcades. The underlying flare arcades are thought to be a consequence of magnetic reconnection along a current sheet in the corona. At the same time, theory predicts plasma jets from the reconnection site which would be extremely difficult to observe directly because of their low density. It has been suggested that the dark supra-arcade downflows (SADs) seen falling through supra-arcade fans may be low density jet plasma. The head of a low density jet directed towards higher density plasma would be Rayleigh-Taylor unstable, and lead to the development of rapidly growing low and high density fingers along the interface. Using SDO/AIA 131A images, we show details of SADs seen from three different orientations with respect to the flare arcade and current sheet, and highlight features that have been previously unexplained, such as the splitting of SADs at their heads, but are a natural consequence of instabilities above the arcade. Comparison with 3-D magnetohydrodynamic simulations suggests that supra-arcade downflows are the result of secondary instabilities of the Rayleigh-Taylor type in the exhaust of reconnection jets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.