Abstract

Aims. We aim to study spatially resolved chromospheric oscillations of the quiet Sun (QS) in the mm-domain at a resolution of a few arcsec, typically 2.4″ × 4.5″. Methods. We used Atacama Large millimeter and submillimeter Array (ALMA) time series of interferometric observations of the QS obtained at 3 mm with a 2-s cadence and a spatial resolution of a few arcsec. The observations were performed on March 16, 2017 and seven 80″ × 80″ fields of view (FoV) going from disk center to limb were covered, each one observed for 10 min, therefore limiting the frequency resolution of the power spectra to 1.7 mHz. For each FoV, masks for cell and network were derived, and the averaged power spectral densities (PSDs) for the entire FoV, cell, and network were computed. The resulting power spectra were fit with an analytical function in order to derive the frequency and the root-mean-square (rms) power associated with the peaks. The same analysis, over the same FoVs and for the same intervals, was performed for simultaneous Atmospheric Imaging Assembly (AIA) image sequences in 1600 Å. Results. Spatially resolved chromospheric oscillations at 3 mm, with frequencies of 4.2 ± 1.7 mHz are observed in the QS, in both cell and network. The coherence length-scale of the oscillations is commensurate with the spatial resolution of our ALMA observations. Brightness-temperature fluctuations in individual pixels could reach up to a few hundred K, while the spatially averaged PSDs yield rms in the range ≈55–75 K, i.e., up to ≈1% of the averaged brightness temperatures and exhibit a moderate increase towards the limb. For AIA 1600 Å, the oscillation frequency is 3.7 ± 1.7 mHz. The relative rms is up to 6% of the background intensity, with a weak increase towards the disk center (cell, average). ALMA 3 mm time-series lag AIA 1600 Å by ≈100 s, which corresponds to a formation-height difference of ≈1200 km, representing a novel determination of this important parameter. Conclusions. The ALMA oscillations that we detected exhibit higher amplitudes than those derived from previous lower (≈10″) resolution observations at 3.5 mm by the Berkeley-Illinois-Maryland Array. Chromospheric oscillations are, therefore, not fully resolved at the length-scale of the chromospheric network, and possibly not even at the spatial resolution of our ALMA observations. Any study of transient brightenings in the mm-domain should take into account the oscillations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call