Abstract

A theory of Rossby waves makes a number of predictions about motions below the thermocline at Site D (39°10'N, 70°W). An experiment was made to test these predictions. Kinetic energy spectra show most of the energy is associated with periods of a week to a few months. The Reynolds' stress is negative for these periods. There is high coherence and on phase shift between 1000 m and 2000 m depths. Most of the wave-number estimates point to the south-west quadrant, consistent with westward propagation and with momentum flux into the Gulf Stream and energy flux out of it. There is enough consistency between statistics based on successive 8-month records to conclude that statistics based on a single 8-month record near Site D are meaningful. In an 8-month array of twenty-six current meters, for periods of a week to a month, the divergence is small compared to the vorticity, and the motion is transverse. The energy increases toward the bottom. The observed wave-numbers and frequencies fit the theoretical dispersion relationship satisfactorily. The kinetic energy of the fluctuations is much larger near the Gulf Stream than farther upslope. The vorticity is in quadrature with the upslope velocity. I conclude there is strong evidence that topographic Rossby wave mechanics are dominant below the thermocline on the continental rise north of the Gulf Stream.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.