Abstract
AbstractThe solitary larval endoparasitoid Eadya daenerys Ridenbaugh (Hymenoptera: Braconidae) is a proposed biocontrol agent of Paropsis charybdis Stål (Coleoptera: Chrysomelidae, Chrysomelinae), a pest of eucalypts in New Zealand. Eadya daenerys oviposition behaviour was examined in two assay types during host range testing, with the aim of improving ecological host range prediction. No‐choice sequential and two‐choice behavioural observations were undertaken against nine closely related species of New Zealand non‐target beetle larvae, including a native beetle, introduced weed biocontrol agents, and invasive paropsine beetles. No behavioural measure was significantly different between no‐choice and two‐choice tests. In sequential no‐choice assays the order of first presentation (target–non‐target) had no significant effect on the median number of attacks or the attack rate while on the plant. Beetle species was the most important factor. Parasitoids expressed significantly lower on‐plant attack rates against non‐targets compared to target P. charybdis larvae. The median number of attacks was always higher towards target larvae than towards non‐target larvae, except for the phylogenetically closest related non‐target Trachymela sloanei (Blackburn) (Coleoptera: Chrysomelidae, Chrysomelinae). Most non‐target larvae were disregarded upon contact, which suggests that the infrequent attack behaviour observed by two individual E. daenerys against Allocharis nr. tarsalis larvae in two‐choice tests and the frass of Chrysolina abchasica (Weise) was probably abnormal host selection behaviour. Results indicate that E. daenerys is unlikely to attack non‐target species apart from Eucalyptus‐feeding invasive paropsines (Chrysomelinae). Non‐lethal negative impacts upon less preferred non‐target larvae are possible if E. daenerys does attack them in the field; however, this is likely to be rare.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.