Abstract

While modification of a strong (high Cu) Sn-Ag-Cu (SAC) solder alloy with a substitutional alloy addition (X=Co, Fe, Zn, and Ni) for Cu has been demonstrated to enhance solder joint strength and ductility after aging at 150°C for 1,000 h, control of the as-solidified SAC+X solder joint microstructure is also needed to inhibit under cooling and nucleation of brittle pro-eutectic phases (e.g., Ag3Sn). Bulk undercooling measurements of SAC+X alloys and microstructural analysis of SAC+X solder joints were used to rank the effectiveness and consistency of low-level (X < 0.15 wt.%) substitutional additions to a base SAC composition, Sn-3.5Ag-0.95Cu (wt.%). This SAC composition was selected to favor thermodynamically the nucleation of pro-eutectic Cu6Sn5 over that of Ag3Sn and the formation of an enhanced ternary eutectic fraction in the joint microstructure, while retaining a pasty range that is only 3°C. Using differential scanning calorimetry with sample pans that serve as either inert (aluminum) or actively wetting (copper) substrates, reflow cycles were studied that simulated surface mount (1.5°C/s) and ball-grid array (0.17°C/s) cooling rates. Of the SAC+X solders tested with copper pans, X = Zn appeared to be most effective and consistent, providing catalytic enhancement of the nucleation temperature for even the minimum concentration (0.05 wt.%) and lowest cooling rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.