Abstract
[1] High-resolution (km in space and hourly in time) surface currents observed by an array of high-frequency radars off Oregon are analyzed to quantify the decorrelation time and length scales of their near-inertial motions. The near-inertial surface currents are dominantly clockwise with amplitudes of 9–12 cm s−1. However, they appear asymmetric and elliptical as a result of counterclockwise inertial motions with magnitudes in a range of 2–5 cm s−1. The decorrelation time and length scales are computed from the decay slope of the near-inertial peak and the spatial coherence in the near-inertial frequency band, respectively. Decorrelation time scales of clockwise near-inertial motions increase from 2 days nearshore (within 30 km from the coast) to 6 days offshore, and their length scales increase from 30 to 90 km seaward possibly due to coastal inhibition. The local spatial coherence has an exponentially decaying structure for both clockwise and counterclockwise rotations, and their phases propagate northwestward (offshore) for clockwise and northeastward (onshore) for counterclockwise rotations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.