Abstract

Abstract. In-situ airborne measurements of trace gases, aerosol size distributions, chemistry and optical properties were conducted over Mexico and the Eastern North Pacific during MILAGRO and INTEX-B. Heterogeneous reactions between secondary aerosol precursor gases and mineral dust lead to sequestration of sulfur, nitrogen and chlorine in the supermicrometer particulate size range. Simultaneous measurements of aerosol size distributions and weak-acid soluble calcium result in an estimate of 11 wt% of CaCO3 for Asian dust. During transport across the North Pacific, ~5–30% of the CaCO3 is converted to CaSO4 or Ca(NO3)2 with an additional ~4% consumed through reactions with HCl. The 1996 to 2008 record from the Mauna Loa Observatory confirm these findings, indicating that, on average, 19% of the CaCO3 has reacted to form CaSO4 and 7% has reacted to form Ca(NO3)2 and ~2% has reacted with HCl. In the nitrogen-oxide rich boundary layer near Mexico City up to 30% of the CaCO3 has reacted to form Ca(NO3)2 while an additional 8% has reacted with HCl. These heterogeneous reactions can result in a ~3% increase in dust solubility which has an insignificant effect on their optical properties compared to their variability in-situ. However, competition between supermicrometer dust and submicrometer primary aerosol for condensing secondary aerosol species led to a 25% smaller number median diameter for the accumulation mode aerosol. A 10–25% reduction of accumulation mode number median diameter results in a 30–70% reduction in submicrometer light scattering at relative humidities in the 80–95% range. At 80% RH submicrometer light scattering is only reduced ~3% due to a higher mass fraction of hydrophobic refractory components in the dust-affected accumulation mode aerosol. Thus reducing the geometric mean diameter of the submicrometer aerosol has a much larger effect on aerosol optical properties than changes to the hygroscopic:hydrophobic mass fractions of the accumulation mode aerosol. In the presence of dust, nitric acid concentrations are reduced to <50% of total nitrate (nitric acid plus particulate nitrate). NOy as a fraction of total nitrogen (NOy plus particulate nitrate), is reduced from >85% to 60–80% in the presence of dust. These observations support previous model studies which predict irreversible sequestration of reactive nitrogen species through heterogeneous reactions with mineral dust during long-range transport.

Highlights

  • Mineral aerosol is generated at the Earth surface by aeolian erosion of unconsolidated sand to clay grade soil particles

  • DC-8 data from the Pacific Phase of INTEX-B is stratified into data collected near Hawaii (Latitude 40◦ N)

  • The presence of dust is found to reduce the median diameter of the accumulation mode aerosol by up to 25% due to competition for condensing secondary aerosol species

Read more

Summary

Introduction

Mineral aerosol is generated at the Earth surface by aeolian erosion of unconsolidated sand to clay grade soil particles. Mineral aerosol participate in a wide variety of atmospheric process including direct radiative forcing (Sokolik and Toon, 1999; Tegen and Lacis, 1996), indirectly as cloud and ice condensation nuclei (Charlson et al, 1992; Sassen, 2002; Sassen et al, 2003), as a source of micronutrients in biogeochemical cycles (Harvey, 2007; Martin, 1990), and as surfaces for heterogeneous chemical reactions (Andreae and Crutzen, 1997; Dentener et al, 1996; Song and Carmichael, 2001). The mean atmospheric residence times are on the order of 4 days (δ = 43%) resulting in a mean estimate of global annual average aerosol dust burden of 20 Tg (δ = 40%). Dust accounts for only 25% of global annually average aerosol optical depth (AOT), a value comparable in magnitude to hygroscopic aerosol such as sulfates and sea salt (Kinne et al, 2006)

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call