Abstract

AbstractStudies of vertical and interhemispheric coupling during Sudden Stratospheric Warmings (SSWs) suggest that gravity wave (GW) momentum flux divergence plays a key role in forcing the middle atmosphere, although observational validation of GW forcing is limited. We present a whole atmosphere view of zonal winds from the surface to 100 km during the January 2013 major SSW, together with observed GW momentum fluxes in the mesopause region derived from uninterrupted high‐resolution meteor radar observations from an All‐Sky Interferometric Meteor Radar system located at Trondheim, Norway (63.4°N, 10.5°E). Observations show GW momentum flux divergence 6 days prior to the SSW onset, producing an eastward forcing with peak values of ∼+145 ± 60ms−1d−1. As the SSW evolves, GW forcing turns westward, reaching a minimum of ∼−240 ± 70ms−1d−1∼+18 days after the SSW onset. These results are discussed in light of previous studies and simulations using the Whole Atmosphere Community Climate Model with Specified Dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.