Abstract

AbstractGW170817, the merger of two neutron stars witnessed through both its gravitational wave siren and its glow at all wavelengths of light, represents the first multi-messenger detection of a compact binary merger. The association of the GW in-spiral signal from GW170817 with a γ-ray burst, a kilonova, and a non-thermal afterglow spanning all bands of the electromagnetic spectrum, has provided rich constraints on the physics and astrophysics of neutron stars. Starting from the example of GW170817, I briefly summarize recent results on observations of electromagnetic afterglows from gravitational wave triggers. In the light of these results, I highlight some key questions that are yet to be answered after the GW170817 discovery. I conclude by commenting briefly on some opportunities that lie in front of us, as improvements in ground-based gravitational wave detectors’ sensitivities will transform a trickle of multi-messenger discoveries into a flood, bringing the field of gravitational wave astronomy from its infancy to its maturity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.