Abstract

Since nearly all discrete radio sources of astronomical interest are of insufficient angular extent for their detailed structural properties to be accessible to single-dish radio telescopes, radio interferometry must be employed to gain information on the morphologies of these objects. Recently constructed imaging interferometer arrays which employ the technique of Fourier synthesis, particularly MERLIN and the VLA (Very Large Array), and the more recent VLBI arrays, have given unprecedented imaging capabilities, with the result that our knowledge, and hence perceptions, of discrete radio sources have vastly changed over the last few years. An equally important parallel development has been image processing algorithms. These have vastly improved the quality of information produced by these arrays, so that an instrument such as the VLA can now produce images with speed and quality exceeding original design specifications by factors of 100 to 1000.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.