Abstract

In this paper, the characterization of fretting damage on press-fitted specimens is proposed by experimental methods. A series of fatigue tests and interrupted fatigue tests on pressfitted specimens were carried out by using a rotate bending fatigue test machine. Macroscopic and microscopic characteristics were observed to identify fretting damage mechanism with a scanning electron microscope (SEM) and profilometer. The mechanism of fretting fatigue damage on pressfitted structure is discussed from experimental results. It is found that small cracks of 30~40m in depth are initiated when the specimen reached about 10% of the total life, and thus almost 90% of the fretting fatigue life of press fits can be considered to be in the crack propagation phase. Most of fatigue cracks are initiated at 1050m inner side of contact edge, and multiple cracks are nucleated and interconnected in the fretted surface. The crack nucleation angle in the near contact edge region is larger than that in the inside of the contact edge region. The fretting wear increased with increasing fatigue cycle. Since the fretting wear is relevant to the evolution of surface profile, the fretting fatigue is observed to be closely related with the fretting wear.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call