Abstract

AbstractThe evolution of a mesoscale convective system (MCS) observed during the International H2O Project that took place on the Great Plains of the United States is described. The MCS formed at night in a frontal zone, with four initiation episodes occurring between approximately 0000 and 0400 local time. Radar, radiosonde, and surface data together show that at least three of the initiation episodes were elevated, occurring from moist conditionally unstable layers located above the boundary layer, which had been stabilized by previous MCSs. Initiation occurred in northwest–southeast-oriented lines where a southerly nocturnal low-level jet terminated, generating elevated convergence. One initiation episode was observed using the S-band dual-polarization Doppler radar (S-Pol) and occurred at the intersection of this convergence zone with a propagating wave. Calculations of the Scorer parameter were consistent with wave trapping. Downdrafts from the developing convection generated both waves and bores, which propagated ahead of the cold pool, initiating further convection. Between 0700 and 1000 local time, the structure and orientation of the MCS evolved to a southwest–northeast-oriented squall line, which built a cold-pool outflow that could lift near-surface air to its level of free convection. The weaker cold pool in the eastern part of the domain was consistent with the greater impacts of a previous MCS there. To the authors’ knowledge, this case study provides the first detailed observational investigation of elevated initiation leading to surface-based convection, a process that appears to be an important mechanism for the generation of long-lived MCSs from elevated initiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call