Abstract

DC electric fields and associated E × B plasma drifts detected with the double‐probe experiment on the C/NOFS satellite during extreme solar minimum conditions near the June 2008 solstice are shown to be highly variable, with weak to moderate ambient amplitudes of ∼1–2 mV/m (∼25–50 m/s). Average field or drift patterns show similarities to those reported for more active solar conditions, i.e., eastward and outward during day and westward and inward at night. However, these patterns vary significantly with longitude and are not always present. Daytime vertical drifts near the magnetic equator are largest in the prenoon sector. Observations of weak to nonexistent prereversal enhancements in the vertical drifts near sunset are attributable to reduced dynamo activity during solar minimum as well as seasonal effects. Enhanced meridional drifts are observed near sunrise in certain longitude regions, precisely where the enhanced eastward flow that persisted from earlier local times terminates. The nightside ionosphere is characterized by larger‐amplitude, structured electric fields dominated by horizontal scales of 500–1500 km even where local plasma densities appear relatively undisturbed. Data acquired during successive orbits indicate that plasma drifts and densities are persistently organized by longitude. The high duty cycle of the C/NOFS observations and its unique orbit promise to expose new physics of the low‐latitude ionosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.