Abstract

AbstractMultiple observation and analysis datasets are used to demonstrate two key features of the Atypical Rapid Intensification (ARI) process that occurred in Atlantic Hurricane Dorian (2019): 1) precession and nutations of the vortex tilt and 2) blocking of the impinging upper-level environmental flow by the outflow. As Dorian came under the influence of an upper-level anticyclone, traditional methods of estimating vertical wind shear all indicated relatively low values were acting on the storm; however, high-spatiotemporal-resolution atmospheric motion vectors (AMVs) indicated that the environmental flow at upper levels was actually impinging on the vortex core, resulting in a vertical tilt. We employ a novel ensemble of centers of individual swaths of dual-Doppler radar data from WP-3D aircraft to characterize the precession and wobble of the vortex tilt. This tilting and wobbling preceded a sequence of outflow surges that acted to repel the impinging environmental flow, thereby reducing the shear and permitting ARI. We then apply prior methodology on satellite imagery for distinguishing ARI features. Finally, we use the AMV dataset to experiment with different shear calculations and show that the upper-level cross-vortex flow approaches zero. We discuss the implication of these results with regards to prior works on ARI and intensification in shear.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call