Abstract

A Cu-15.0 at. pct Sn alloy has been chosen as a model alloy for the study of aging effects in copper-based shape memory alloys. Different thermal aging treatments were carried out to determine the effects of both parent phase and martensite aging on the amount of shape recovery and the characteristic transformation temperaturesMs,As, andAf. Aging of the martensite reduces both the amount of shape recovery and the extent of the reverse martensite → parent transformation. High martensite heating rates promote complete shape recovery and reverse transformation while the aging occurring during slow heating can inhibit or prohibit both. But irrespective of the martensite heating rate the transformation temperature hysteresis as given by (Ms -As) is large for the Cu-15 pct Sn alloy compared to other shape memory alloys exhibiting thermoelastic behavior. On the other hand, some beneficial effects were noted when the Cu-15 pct Sn alloy was aged in the parent phase condition prior to subsequent transformation to martensite. TheMs,As, andAf were lowered following prior parent phase aging, possibly because of a change in long range order, but prior parent phase aging was found to diminish the deleterious effect of martensite aging. Both shape recovery and the extent of the reverse martensite → parent transformation are enhanced by prior parent phase aging. The enhancement is greater the higher the aging temperature or the longer the aging time at a given temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.